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Abstract : We present a graphics hardware-based system for interactive denoising, vortex
detection, and visualization of vector data. No intermediate results need to be read back by the
application once the vector field has been loaded onto the graphics adapter. Due to modern GPUs'
parallel processing capabilities, our system significantly outperforms software implementations
and thus provides a valuable tool for the interactive exploration of vector fields and the
understanding of flow structures.
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1. Introduction

Numerical visualization is an important task when analyzing flow data obtained by physical or
numerical flow simulations. Although there is nothing like the “best” visualization technique, vortex
detection methods are undoubtedly among the most effective tools for understanding a flow field.
However, sophisticated vortex detection is computationally expensive and cannot currently be done
interactively on common PCs. However, this may be desirable if the input data is noisy and suitable
bandpass filters for eliminating unwanted frequencies are required. In this case, an interactive cycle
of filtering, vortex detection, visualization, and evaluation (based on the existing knowledge of the
flow) must be entered and repeated until the optimal filter characteristics have been found and a
visualization of acceptable quality is obtained. Since neither filtering nor visualization comes for free,
this cycle is even more expensive than the vortex detection alone.

In this paper we show that by shifting the entire cycle from the CPU to the graphics processing
unit (GPU) and thus by exploiting the modern GPUs' parallel processing capabilities interactive
work is possible. Our solution expects the vector field data to be made available in a
texture—on-board memory which is usually used to store images to be mapped to polygons to make
them look more natural—and immediately generates isosurface visualizations of the detected
vortices. Upon adjustments of filter support or isovalue, the visualization is instantaneously updated.
At no instant is it necessary to pass any intermediate results back to the application. Since our
texture-based approach assumes the input data to be defined on a uniform Cartesian grid, processing
unstructured grids requires a resampling step which, however, can be done efficiently without a
significant loss in accuracy (see Stegmaier et al., 2003) and must be done only once.
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2. Related Work

There are several methods for detecting vortices, many of them tailored to specific applications. The
papers by (Jiang et al., 2003) and (Post et al., 2002) give an overview and taxonomies of the most
popular techniques. So-called Jocal/ methods require only operations within the neighborhood of a cell.
All algorithms based on the Jacobian matrix fall into this class. On the contrary, global methods
examine many grid cells to detect a vortex. Typical representatives of this class are algorithms based
on streamline tracing. Since global methods are obviously harder to parallelize and in general more
complex than local methods, only local algorithms are suitable for a target platform as limited as a
GPU.

Another desirable property of a vortex detection algorithm is Galilean invariance which allows
the detection of vortices in time-varying flow fields, too. This further isolates the number of
algorithms appropriate for an implementation on the GPU.

To our knowledge, no vortex detection algorithms have been implemented on a GPU yet.
However, other techniques have been developed to visualize flow fields using a GPU. Especially
texture-based techniques (Weiskopf et al., 2003) are a valuable foundation for this work since their
basic procedures are very similar to that of GPU-based vortex detection.

3. Vortex Detection

The most simple vortex detection method that is both local and Galilean invariant is vorticity o' =
Vxu with the vector field u (x) = (1, w2, u3)T. Since  is a vector, vorticity is not directly suitable for
visualization and its magnitude is, therefore, usually used instead.

A more sophisticated approach that also complies with the criteria defined for a GPU-based
implementation is the A2 method (Jeong and Hussain, 1995; Miiller et al., 1998). It first decomposes
the velocity gradient tensor Vu (the Jacobian) into a symmetric part S and an anti-symmetric part Q:
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From a physical point of view S is the strain-rate tensor and Q the spin tensor. The A2 criterion
defines a vortex as a connected region where the second largest of the three eigenvalues A1> A2> A3 of
the matrix S2? + Q2 is negative. Vortex structures are then visualized by computing isosurfaces based
on As. Since both vorticity and the A2 criterion start from the Jacobian of the velocity field,
vorticity-based vortex detection basically i1s a by-product of a As-based vortex detection
implementation. It will, therefore, serve as our starting point.

4. Programming the GPU

Until a few years ago, graphics hardware included only a fixed-function pipeline that was
programmed by setting states and generating geometry. Starting with NVIDIA's GeForce256 very
limited programmability became possible with texture-combining modes. Modern graphics adapters
include both programmable vertex and fragment processors (Fig. 1) which enable the programmer to
operate on each vertex—coordinate vector—provided by the application and each
fragment—pixel-like object with additional information—generated by rasterization. The processors
are programmed by loading small programs, so-called shaders onto the graphics card which are
automatically executed during the image generation process. Vertex or pixel shaders are usually
used to create advanced visual effects like per pixel lighting, shadows, or refractions in real-time.
However, modern GPUs combine several geometry engines and rendering pipelines with a very high
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Fig. 1. Simplified programming model for modern GPUs.

memory throughput, so what has entered the desks are actually quite powerful parallel processors.
And programmability has made these accessible. This fact has been exploited by many researchers in
various fields to create applications that outperform software-based solutions by up to two orders
magnitude. Examples can be found both in visualization as well as in general numerical computing
(Kriiger and Westermann, 2003).

However, GPUs are not as easy to program as CPUs. This is not because of the programming
environment since the advent of high-level shader languages like NVIDIA's Cg (NVIDIA, 2002) or
Microsoft's HLSL (virtually the same languages) has made it possible to write GPU programs with a
C-like syntax. Rather, the reason is that the streaming model of GPUs does not support branching
and loops with non-constant numbers of iterations. In addition, there are vendor-dependent limits
regarding the maximum number of instruction slots! and variables that can be used by a program.
E.g., on an NVIDIA GeForceFX the maximum number of instructions slots is 1,024 while there are
only 64 arithmetic instruction slots and 32 texture lookups available on an ATI 9800.

For our implementation we have chosen the ATI 9800 graphics adapter and DirectX/D3D
despite the lower instruction limit since on this platform multi-pass rendering (i.e. the use of
previous computation results/pixel values in another rendering pass, see dashed path in Fig. 1) does
involve only a very minor performance penalty. And as will be shown, multi-pass rendering is
required if the number of redundant computations is to be reduced.

5. System Architecture

The system is divided into an initialization part executed once per dataset and the actual cycle that is
entered each time the filter characteristics are adjusted by the user.

Before entering the cycle a one-cell border is added to the volume with the border cell values
chosen such that the gradients at the original cells can all be determined using central differences.
This relieves us from having to handle border cells differently from inner cells during gradient
estimation. Assuming original grid dimensions of 7 x J x K this results in a new volume of the
dimensions (7+ 2) x (J+ 2) x (K + 2) subsequently cut into K + 2 slices of constant Z-coordinate and
stored as 2D floating point RGBA-textures.

The cycle in turn consists of three major parts: denoising the raw vector data, computing
vorticity magnitude, and rendering the detected vortices.

5.1 Filtering

All measurements are subject to noise. To oppress this noise, a lowpass filter can be employed.
Usually, a lowpass filter's ability to oppress noise greatly depends on its support, i.e. the number of
neighbors incorporated into the calculation of the filtered value.

In a hardware implementation the neighbors need to be determined by texture lookups; thus, a
filter of support N requires N’ texture lookups to obtain the neighbor information. Since our target

1 There is a one-to-many relation between instructions and instruction slots so differentiation between the two terms is inescapable.
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platform does only support 32 texture lookups per pass, a single-pass implementation of a
non-separable filter is restricted to a filter support of three. This is obviously of limited value for
denoising. We therefore concentrate on separable filters requiring 3 x N texture lookups and a
multi-pass implementation. Since the Gaussian lowpass filter is separable, isotropic (i.e. it well
preserves oriented features) and easy to implement, this filter presents a suitable choice for our
application.

The filtering is accomplished by rendering K+ 2 filled quadrilaterals of (/+ 2) x (J+ 2) pixels.
In a pixel shader, the current pixel's Nneighbor values (including itself) are looked up and multiplied
by weights obtained by evaluating the Gauss function at equidistantly spaced points. The data is
filtered first in Z-direction to minimize the number of temporary textures.

The passes consume N texture lookups each and 32 and 12 instructions slots for the filtering in
X-/Y- and Z-direction, respectively. Since in each pass at most N texture lookups are required, filter
supports of up to 31 could theoretically be implemented with the number of texture lookups
restricted to 32. However, on our platform the number of texture samplers is currently limited to 16
so the maximum filter support is 15.

5.2 Vortex Dtection

Implementing vorticity-based vortex detection on a GPU is straightforward when using HLSL. All
that needs to be done is calculating the Jacobian using central differences from the six surrounding
neighbors of the volume element currently being processed:

// Determine first column of the Jacobian (x-direction)

forwardNeighbor = tex2D(slicelSampler, IN.rightTexCoords);

backwardNeighbor = tex2D(slicelSampler, IN.leftTexCoords);

gradientX = (forwardNeighbor - backwardNeighbor) * DOUBLE_DISTANCES_INV.x;

// Determine second and third column of the Jacobian (y- and Z-direction)

vorticity.x = gradientY.z - gradientZ.y;
vorticity.y = gradientZ.x - gradientX.z;
vorticity.z = gradientX.y - gradientY.x;

OUT.color = float4(length(vorticity), 0.0, 0.0, 0.0);

The resulting pixel shader code is—with six texture lookups and 16 arithmetic instructions—well
within the limits of our hardware platform.

5.3 Volume Visualization

The input vector data is processed slice per slice and the resulting vorticity magnitudes again
written to a stack of 2D textures since at the time of this writing rendering to 3D textures was
impossible. To generate high-quality visualizations of this stack of 2D textures we adopted a solution
proposed in (Rezk-Salama et al., 2000). The basic idea is to determine the intersection polygons of
view-aligned slices with the given stack of quadrilaterals and to interpolate color values on these
polygons on-the-fly using the two neighboring textures. Unfortunately, this approach suffers from
the large number of intersection polygons that have to be calculated each time the volume is rotated.
Instead of determining view-aligned intersection polygons on-the-fly we, therefore, pre-compute sets
of intersection polygons for the X- and Y-direction (both positive and negative) and switch between
them and the original stack depending on the orientation of the volume's bounding box to the viewer.
This not only enables us to pre-calculate the intersection polygons but also to send the geometry data
of the slices only once to the graphics adapter as a vertex buffer. In addition, assuming
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Fig. 2. Isosurfaces of vortex structures in K-type transition imulation data (2 116 x 250 voxels).
From left to right: a) Vorticity magnitude of original data b) Vorticity magnitude of filtered data c) A,
values of filtered data d) Reference image generated by a commercial flow visualization software.

equidistantly-spaced slices of the original stack the amount of geometry stored in the vertex buffers
can be further significantly reduced (by factors of 7+ 1 and J/+ 1, respectively) by storing only a single
stack of stripes and rendering the remaining ones with a suitable translation applied. The approach
is hence able to accelerate the visualization without consuming a noteworthy amount of memory.

Figure 2 shows two visualizations of vortices detected with our system using a vorticity-based
approach. Image a) shows the isosurface obtained from the original dataset, image b) the result after
applying a strong Gaussian filter of kernel size 11. The dataset used for these screenshots was
obtained by DNS of K-type transition experiments (Kachanov, 1994; Rist and Kachanov, 1995). This
kind of data typically exhibits striking A- and Q-vortices. Obviously, these vortex structures are only
found in the filtered data while the original data seem to cast a shroud over the vortex structures.
However, the individual vortices are not even neatly separated when filtering the data—which comes
at no surprise regarding the primitive vortex detection approach. On the other hand, this means that
for a productive system a more sophisticated approach like the A2-method is required.

6. A2 Vortex Detection

A careful implementation of the A2 criterion requires almost twice as many instruction slots as are
available on the ATI 9800; thus, the implementation must be split into several passes. And since only
four 32-bit floating point values can be passed from one pass to the next and expensive multiple
render targets (MRTs) are to be avoided, this split-up must be chosen carefully.

It would be natural to set up the matrix S2 + Q2 in a first pass and to compute its eigenvalues in
a second pass. However, since the matrix is 3 x 3 this approach require nine values to be exchanged
between the passes. Writing down the expression for S + Q2 however reveals that the matrix is
symmetric and, therefore, can be exchanged by sending only six values (J denotes the Jacobian):

‘]:(aij); JT:(“J:‘) @
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Since this still does not fit into a four-component RGBA value our solution is to calculate the four
coefficients of the characteristic cubic polynomial in a first pass and to solve the characteristic
equation in a second pass using an adaptation of Cardan’s Solution (Nickalls, 1993). With this
solution only four floating point numbers need to be passed between the passes which tightly fit into
an RGBA value and, accordingly, MRTs can be abandoned. Eventually, the first rendering pass in
this approach consumes six texture fetches and 59 instruction slots.

The calculation of eigenvalues in the second pass can be implemented very efficiently when
taking advantage of the fact that S2 + Q2 is real and symmetric and, therefore, always has three real
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Fig. 3. Vortices extracted on the GPU. From left to right: a) DNS dataset of a flow through a cylinder
filled with spheres (201 x 152 x 152 grid); b) flow around car body (RANS simulation, 301 x 131 x 100
grid); c) experimental data of laminar water channel (200 x 40 x 110 grid, split view for two filter kernels).
Datasets courtesy LSTM, University of Erlangen, BMW AG, and IAG, University of Stuttgart.

roots and by replacing the required cosine and arccosine calculations by a single texture lookup. This
increases the number of texture lookups to two but—with only 55 instruction slots—allows us to stay
within the tight hardware limits of our platform.

We will not go into further details on how the two passes are actually mapped to the graphics
hardware since the basic approach is similar to what has already been described in Sec. 5 but fairly
subtle and tedious details have to be coped with to stay within the instruction limit and to obtain an
efficient implementation. Nevertheless, a GPU-based iz implementation 1is possible and a
comparison with vorticity-based vortex detection (Figs. 2 b) and c)) well justifies the introduction of a
more advanced—while also more time-consuming—detection algorithm.

7. Results

7.1 Visual Evaluation

The presented system combines filtering and vortex detection capabilities. Thus, the system 1is
particularly well suited to noisy data like, e.g., the datasets obtained by experiments. However, the
system 1is also applicable to special types of simulation data.

Both Reynolds Averaged Navier-Stokes (RANS) and Large Eddy simulations (LES) result in
an increased computational viscosity which means that small-scale structures will effectively be
eliminated through diffusion and dissipation. Neither RANS simulations nor LES will, therefore, be
very vulnerable to noise. On the contrary, DNS (Direct Numerical Simulation) should capture all
scales that are relevant in the flow without any turbulence modeling. Large Reynolds number flows
typically mean small viscosity, and—particularly for turbulent flows—very small length scales in
comparison to a relevant geometric length scale. Very small length scales, in turn, means high grid
resolution. If insufficient resolution is available, the smallest scales will be determined by the
numerics, and not by the physics, which will result in noisy data. We have, therefore, included both
experimental and DNS data for the evaluation of our system. Figure 3 shows vortices extracted from
DNS data (a), RANS data (b), and experimental data (c). Since these visualizations do not definitely
attest the quality of the visualized data, we also created reference images using the commercial flow
visualization software PowerVIZ (Exa Corp., 2001). Figure 2 c¢) and d) contrast two A2 visualizations
of the K-type transition dataset. PowerVIZ implements geometry-based isosurface extraction, does
not reveal all its internal settings used for producing the visualizations (perspective transformation,
color tables, etc.) and uses higher-precision arithmetic than is currently available on the ATI 9800
(24 bit). Exactly matching the images is, therefore, virtually impossible. However, the visualizations
are nevertheless almost identical and give evidence of the high quality that can be obtained with
hardware-accelerated implementations.
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7.2 Storage Requirements

Our GPU-based implementation stores the input data in textures. With only 256 MB texture
memory on our platform this means that memory efficiency is a crucial topic in the evaluation of
graphics-hardware—accelerated implementations.

The raw input data is stored in 128 bit RGBA textures which must not be modified since they
are needed each time the filter characteristics are adjusted. To store the filtered results, another
stack of 128 bit floating point textures is required. These textures are reused for storing the
gradients of the A2 scalar field required for lighting the isosurface. The remaining textures are
independent of the size of the input data and of negligible size. Thus, if the input data comprises N
nodes, about 32 Nbyte memory are consumed by the system. Assuming 256 MB texture memory, this
means that the system is applicable to datasets of at most eight million grid points or equivalently a
cube of the dimensions 200 x 200 x 200. However, since both the filtering and the A2 vortex detection
are local, a bricking approach can be easily used to accommodate the system to larger datasets.

7.8 Performance Evaluation

The system performance was evaluated with a 135 x 225 x 129 voxel dataset and a viewport size of
512 x 512 pixels on an ATI 9800 XT graphics adapter (price at time of this writing: about $400). In
this configuration, the filtering time was found to be 165 ms for a Gauss filter of support 11 and the A2
computation time to be 117 ms. The gradient calculation required for lighting the isosurface took 16
ms. These times are independent of the number of intermediate slices and the direction from which
the volume is looked at. On the other hand, the rendering time depends strongly on the direction: For
the Z-direction we measured a visualization time of 41 ms (24.4 fps), for the Y-direction a time of 229
ms (4.4 fps). As expected, the frame rates scale linearly with the amount of pixels generated by the
application.

A hand-optimized software implementation of the A2 vortex detection algorithm using SSE2
vector instructions required 1,150 ms for the vortex extraction on an Intel Pentium 4
processor—almost an order of magnitude slower compared to the hardware-based approach. And
PowerVIZ, a tool well-known for its generally high performance, is even slower by a factor of almost
70 (~8 s) which, however, must probably be partially ascribed to its more complex internal data
structures (which are hierarchies of Cartesian grids).

8. Conclusions

We have described a system for filtering, vortex detection, and visualization of flow data. By
employing modern graphics hardware for performing the calculations instead of the CPU, we were
able to improve the system performance by almost an order of magnitude. For the first time, the cycle
of filtering, vortex detection, and visualization can be handled interactively using low-cost
off-the-shelf hardware readily available at the desks of many researchers.

All the optimizations described in this article were dictated by the particular platform we
chose for our implementation. While it may be true that these restrictions will become obsolete with
the next generation of graphics cards, it were exactly these limitations which led to highly optimized
algorithms and, finally, interactive frame rates. This work can, therefore, be considered to be of great
value for interactive vortex detection even for future generations of graphics hardware.
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